首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50978篇
  免费   9979篇
  国内免费   11612篇
测绘学   5928篇
大气科学   10167篇
地球物理   8888篇
地质学   23795篇
海洋学   8524篇
天文学   3968篇
综合类   3648篇
自然地理   7651篇
  2024年   156篇
  2023年   652篇
  2022年   1748篇
  2021年   2065篇
  2020年   2020篇
  2019年   2253篇
  2018年   1861篇
  2017年   2212篇
  2016年   2221篇
  2015年   2516篇
  2014年   3088篇
  2013年   3331篇
  2012年   3311篇
  2011年   3400篇
  2010年   2888篇
  2009年   3617篇
  2008年   3504篇
  2007年   3736篇
  2006年   3505篇
  2005年   3267篇
  2004年   2874篇
  2003年   2636篇
  2002年   2263篇
  2001年   2026篇
  2000年   1900篇
  1999年   1705篇
  1998年   1486篇
  1997年   1116篇
  1996年   915篇
  1995年   825篇
  1994年   785篇
  1993年   679篇
  1992年   477篇
  1991年   387篇
  1990年   290篇
  1989年   216篇
  1988年   180篇
  1987年   104篇
  1986年   62篇
  1985年   67篇
  1984年   34篇
  1983年   30篇
  1982年   33篇
  1981年   24篇
  1980年   17篇
  1979年   14篇
  1978年   20篇
  1977年   8篇
  1976年   6篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
72.
Forest ecohydrological feedbacks complicate the threshold behaviour of stormflow response to precipitation or wetting conditions on a long-term scale (e.g. several years). In this study, the threshold behaviours in an evergreen-deciduous mixed forested headwater catchment in southern China were examined during 2009–2015, when damaged vegetation was recovering after the great 2008 Chinese ice and snowstorm. The non-uniqueness of the thresholds and the slow and rapid responses of stormflow at the outlet of the catchment in different hydro-climate datasets with different maximum values of gross precipitation (P) and sums of precipitation and antecedent soil moisture index (P + ASI) were assessed. The thresholds of P and P + ASI required to trigger stormflows (i.e. ‘generation thresholds’) and the transition from slow to rapid responses of stormflow (i.e. ‘rise thresholds’) were compared both seasonally and annually. The results indicated significant differences in the analysed datasets, highlighting the need to compare thresholds with care to avoid misinterpretation. Seasonal variations in threshold behaviours in the catchment suggested that vegetation canopy interception contributed to higher rise thresholds, and wetter conditions resulted in higher runoff sensitivity to precipitation during the growing and rainy seasons. Furthermore, the generation thresholds were higher in the dormant season, possibly due to drier soil moisture conditions in the near-channel areas. During the vegetation recovery period, the annual generation thresholds increased, however the rise thresholds did not exhibit a similar trend. The rapid stormflow response above the threshold decreased, possibly due to transpiration and interception of the recovered vegetation. However, the slow stormflow response to small rainfall events below the thresholds was higher in wetter years but lower in drier years, suggesting that the total water input dominated the stormflow response during small rainfall events. In conclusion, the seasonal and annual variations in threshold behaviours highlight that vegetation recovery and hydro-climatic conditions had a notable impact on the stormflow response.  相似文献   
73.
To support the adoption of precision agricultural practices in horticultural tree crops, prior research has investigated the relationship between crop vigour (height, canopy density, health) as measured by remote sensing technologies, to fruit quality, yield and pruning requirements. However, few studies have compared the accuracy of different remote sensing technologies for the estimation of tree height. In this study, we evaluated the accuracy, flexibility, aerial coverage and limitations of five techniques to measure the height of two types of horticultural tree crops, mango and avocado trees. Canopy height estimates from Terrestrial Laser Scanning (TLS) were used as a reference dataset against height estimates from Airborne Laser Scanning (ALS) data, WorldView-3 (WV-3) stereo imagery, Unmanned Aerial Vehicle (UAV) based RGB and multi-spectral imagery, and field measurements. Overall, imagery obtained from the UAV platform were found to provide tree height measurement comparable to that from the TLS (R2 = 0.89, RMSE = 0.19 m and rRMSE = 5.37 % for mango trees; R2 = 0.81, RMSE = 0.42 m and rRMSE = 4.75 % for avocado trees), although coverage area is limited to 1–10 km2 due to battery life and line-of-sight flight regulations. The ALS data also achieved reasonable accuracy for both mango and avocado trees (R2 = 0.67, RMSE = 0.24 m and rRMSE = 7.39 % for mango trees; R2 = 0.63, RMSE = 0.43 m and rRMSE = 5.04 % for avocado trees), providing both optimal point density and flight altitude, and therefore offers an effective platform for large areas (10 km2–100 km2). However, cost and availability of ALS data is a consideration. WV-3 stereo imagery produced the lowest accuracies for both tree crops (R2 = 0.50, RMSE = 0.84 m and rRMSE = 32.64 % for mango trees; R2 = 0.45, RMSE = 0.74 m and rRMSE = 8.51 % for avocado trees) when compared to other remote sensing platforms, but may still present a viable option due to cost and commercial availability when large area coverage is required. This research provides industries and growers with valuable information on how to select the most appropriate approach and the optimal parameters for each remote sensing platform to assess canopy height for mango and avocado trees.  相似文献   
74.
Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural attributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a combination of airborne and satellite remote sensing. Both of these approaches have their strengths and limitations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural parameterization – recording and quantifying 3D structural detail that is not possible from manual field-based or airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the heterogeneity of landscapes in which they are embedded. Here we test the potential of long-range (>2000 m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS deviated from this baseline with increasing distance. Our results show that despite diluted point density and increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25–1.45 m) and canopy cover (RMSE = 5.67–15.91%) at distances of up to 500 m in open savanna woodlands. When aggregated to the same sampling grain as leading spaceborne vegetation products (10–30 m), our findings show potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger areas than traditional TLS sampling can provide.  相似文献   
75.
新一轮的职能改革赋予自然资源部门新的职责,文章在分析了现有自然资源业务数据和基础测绘数据的基础上结合自然资源管理需求,提出了新型基础测绘的相关技术要求、应用方向和地理实体数据的技术路线,为新型基础测绘的开展提供了有益探索,为基础测绘服务自然资源管理提供了理论依据。  相似文献   
76.
光学遥感图像船舶检测主要面临两个挑战:光学遥感图像背景复杂,船舶检测易受海浪、云雾及陆地建筑等多方面干扰;遥感图像分辨率低,船舶目标小,对于其分类与定位带来很大困难;针对上述问题,在FPN的基础上,提出一种融入显著性特征的卷积神经网络模型A-FPN (Attention-Based Feature Pyramid Networks)。首先,利用卷积提取图像特征金字塔;然后,利用顶层金字塔逐级构建显著特征层,抑制背景信息,通过金字塔顶层的细粒度特征提高浅层特征的表达能力,构建自上而下的多级显著特征映射结构;最后利用Softmax分类器进行多层级船舶检测。A-FPN模型利用显著性机制引导不同感受下的特征进行融合,提高了模型的分辨能力,对遥感图像处理领域具有重要应用价值。实验阶段,利用公开的遥感目标检测数据集NWPU VHR-10中的船舶样本进行测试,准确率为92.8%,表明A-FPN模型适用于遥感图像船舶检测。  相似文献   
77.
FY-3D/MERSI-II全球火点监测产品及其应用   总被引:1,自引:0,他引:1  
郑伟  陈洁  闫华  刘诚  唐世浩 《遥感学报》2020,24(5):521-530
FY-3D/MERSI-II全球火点监测产品主要包括全球范围内的火点位置、亚像元火点面积和火点强度等信息,可用于实时监测全球范围的森林草原火灾、秸秆焚烧等生物质燃烧状况。火点判识算法主要根据中红外通道对高温热源的敏感特性,即含有火点的中红外通道像元辐亮度和亮温较远红外通道的辐亮度和亮温偏高,同时较周边非火点的中红外像元偏高,建立合适的阈值可探测含有火点的像元。亚像元火点面积估算主要使用中红外单通道估算,根据亚像元火点面积估算结果对火点强度进行分级,不同的级别表示不同程度的火点辐射强度。基于全球火点自动判识结果,每日生成0.01°分辨率的卫星遥感日全球火点产品,每月生产0.25°×0.25°格点的全球月火点密度图。在利用FY-3D/MERSI-II火点产品开展的全球火点监测应用中,对多起全球重大野火事件进行了监测,为防灾减灾、全球气候变化研究、生态环境保护等方面提供卫星遥感信息支持。  相似文献   
78.
通过野外地质调查及室内综合研究,分析了关中盆地浅层地热能的开发利用情况、赋存特征和形成模式,并对资源量进行了估算,总结了盆地不同地貌单元、不同岩性的岩土体热物性参数特征,计算了区域恒温带深度和浅层大地热流值。关中盆地地热能的形成模式主要为热传导型和热对流型: 热传导型地热资源主要分布于西安凹陷、固市凹陷等完整地质块体内; 热对流型地热资源主要分布于深大断裂直接沟通地表的区域以及断裂带周边区域。采用层次分析法对关中盆地浅层地热能进行适宜性分区,认为关中盆地整体属于地埋管地源热泵系统适宜区或较适宜区,地下水地源热泵系统适宜区和较适宜区主要分布在盆地中部漫滩区和阶地区。利用热储法,计算关中盆地浅层地热能热容量为1.38×1016 kJ/℃,浅层地热能储量巨大,开发利用前景优良。  相似文献   
79.
《China Geology》2020,3(4):633-642
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now. In this study, the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin, Pakistan. Based on the comprehensive analysis of the results and previous data, it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin. The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks, while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks. Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge. Furthermore, the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities. Therefore, it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.  相似文献   
80.
星载微波散射计是获取全球海面风场信息的主要手段, HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF)再分析风场数据、热带大气海洋观测计划(Tropical Atmosphere Ocean Array, TAO)和美国国家数据浮标中心(National Data Buoy Center, NDBC)浮标获取的海面风矢量实测数据, 对HY-2B散射计海面风场数据产品的质量进行统计分析。分析表明, HY-2B风场与ECMWF再分析风场对比, 在4~24m·s-1风速区间内, 风速和风向均方根误差(root mean square error, RMSE)分别为1.58m·s-1和15.34°; 与位于开阔海域的TAO浮标数据对比, 风速、风向RMSE分别为1.03m·s-1和14.98°, 可见HY-2B风场能较好地满足业务化应用的精度要求(风速优于2m·s-1, 风向优于20°)。与主要位于近海海域的NDBC浮标对比, HY-2B风场的风速、风向RMSE分别为1.60m·s-1和19.14°, 说明HY-2B散射计同时具备了对近海海域风场的良好观测能力。本文还发现HY-2B风场质量会随风速、地面交轨位置等变化, 为用户更好地使用HY-2B风场产品提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号